Engineering R&D: Process food,
reduce world hunger

A French-Canadian engineer tackles global nutrition needs with a simple processing system incorporating sophisticated design features.

Brian Harrigan, president of Malnutrition Matters and designer of the VitaGoat food processing system
BEAUTY IN ENGINEERING DESIGN IS NOT SKIN DEEP. AS proof, there's the VitaGoat. VitaGoat is the brainchild of Brian Harrigan, president of Ottawa, Canada-based Malnutrition Matters,, a nonprofit organization focused on improving life in Third World countries. Reasoning that primitive food-processing practices leave tribal people little time for advancement, the group focuses on technology transfers to those regions. Malnutrition Matters' first venture was the VitaCow, a soymilk processing unit that outputs 40 liters of soymilk an hour. More than 4,000 VitaCows are operating in Russia and the Ukraine.

With a third of the world's 6.2 billion people lacking dependable electric service, Harrigan set out to design a nonelectric version with more versatility. The result is VitaGoat, a mini-food plant that processes both wet foods and dry products quickly and efficiently. The system can be built and sold in developing countries for less than $1,500. With assistance from Africare, three beta units are being installed in West Africa. Some countries in the region export mangoes and import mango puree, a value-added product the Goat can produce.

Harrigan is a 1988 mechanical engineering graduate of Montreal's McGill University. He worked for a fabricator of stainless-steel pressure vessels and other equipment for five years, then earned his MBA and joined ProSoya Inc., makers of an airless, cold-grinding soymilk process. As engineering director, Harrigan helped ProSoya build dairy-grade systems with capacities of up to 4,000 liters an hour.

Food Engineering spoke with Harrigan about VitaGoat as he was preparing to visit the beta sites.

FE: How did VitaGoat come about?

Harrigan: The VitaCow is fine for processing soymilk, purees and other aqueous solutions when electricity is readily available. Unfortunately, most of the world's 800 million malnourished people are off the grid, and the cost of an electric motor is prohibitive, anyway. About three years ago I started developing something that was totally nonelectric and could make a wider range of food than the Cow.

In the Cow, grinding and cooking are done in one vessel. We tried that with the Goat, but you can't get enough torque and speed to make a soya suspension with a nonmechanical system. It took two years to arrive at a design that incorporates separate cooking and grinding components. There was no Eureka moment; it simply evolved into a choice between a hand mill, like grandmother used, and a pedal-powered grinder, which became the obvious choice.

FE: What technology does the cycle grinder use?

Harrigan: We adapted a design from the ‘70s by Gordon Wilson, a professor at MIT. He has written books about the ergonomics of pedaling and pedal power.

Ergonomics were important because you simply have to have something that is comfortable to pedal for several hours at a time. You also need something that can deliver enough torque, and the key to Gordon's design is the chain and belt system. There's a high gear for milling soft foods and a low gear for hard.

FE: What modifications were necessary?

Harrigan: You're driving forward, not back, and that geometry creates some challenges with a mill. The belt tensioner had to use simple parts that can be sourced locally, and that precludes derailers in developing countries. Ease of fabrication and cost were always considerations. This uses bona fide parts, not scrap from a junkyard.

A conventional bicycle seat would be too uncomfortable, and we had to consider that users would be Muslim women who aren't supposed to gyrate their hips in public. It sounds crazy, but design has to be appropriate to the group.

Despite its built-in-the-garage appearance, the VitaGoat incorporates sophisticated technology in its workings.
FE: Did you consider a variable-speed grinder?

Harrigan: Variable-speed pulleys would have added $100 to the cost, and that's a big deal in many parts of the world. Availability of parts also would have been an issue. Manual shifting between five speeds is required. We haven't calculated the maximum kilograms of force generated by each gear; we just tested it against the foods it would need to crush.

FE: What design features are included in the steam boiler?

Harrigan: It's a 55 gal. drum that generates superheated steam. It's a modified design by Carl Bielenberg, a Vermont philanthropist and mechanical engineer who set up machine shops in Senegal after graduating from MIT and became an expert on gasifiers and boilers that are very clean and efficient.

The boiler's elegance is on the inside. Water is heated in an inner chamber to about 120

Did you enjoy this article? Click here to subscribe to Food Engineering Magazine.

Recent Articles by Kevin Higgins, Senior Editor

You must login or register in order to post a comment.



Image Galleries

Plant of the Year 2015

Mars Chocolate was chosen as Food Engineering’s 2015 Plant of the Year. The first new Mars candy plant in North America in 35 years is not only LEED Gold certified, it’s highly automated as well.


Burns & McDonnell project manager RJ Hope and senior project engineer Justin Hamilton discuss the distinctions between Food Safety and Food Defense as well as the implications for food manufacturers of the Food Safety Modernization Act.
More Podcasts

Food Engineering

Food Engineering April 2015 Cover

2015 April

The April 2014 issue of Food Engineering features the Plant of the Year: Mars Chocolate. The first new Mars chocolate candy plant in North America in 35 years is not only LEED Gold certified, it’s highly automated as well.

Table Of Contents Subscribe

Plant Facility/Site Issues

What issue about your current plant facility/site keeps you up the most at night?
View Results Poll Archive


Food Authentication Using Bioorganic Molecules

This text provides critical tools and data needed to augment routine food analysis and enhance food safety by aiding in the detection of counterfeit, and potentially deleterious, foods.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.


FE recent tweets

facebook_40.pngtwitter_40px.pngyoutube_40px.png linkedin_40px.pngGoogle +

Food Master

Food Engineering Food Master 2015Food Master 2015 is now available!

Where the buying process begins in the food and beverage manufacturing market. 

Visit to learn more.