Avoiding close encounters between man and machine

September 29, 2005
/ Print / Reprints /
/ Text Size+
Processors must assume responsibility for creating safety in robotic workspaces.

Sal Spada
As manufacturers seek flexibility and rapid changeover in packaging lines, integrated robotic technology is playing an increasing role in the consumer products goods (CPG) industries. Whether it's in inspecting product quality, expanding the operational range of the machinery or automating end-of-line packaging, robotics automation is helping to improve productivity in packaging operations.

But the productivity gains robotics produce come with a cost. CPG manufacturers must address a new dimension of safety just as rigorously as the automotive and metalworking industries where robotics have been widely used for over two decades.

The logic for this increased focus on safety is obvious. Packaging lines and work cells that lack an adequate safety environment will simply not be productive. With a broader use of robotics, a greater number of workers are exposed to the robotic workspace than ever before, and the high dynamic forces created with robotic movements can cause severe injuries to humans, as well as damage to machine parts, if unwanted encounters occur between man and machine. Consequently, stringent safety environments must be created and maintained. And the latest robotic safety standards must be designed into work environments.

Significant international development efforts are underway to create strategies for worker safety around automated machinery. In the United States, the revised standard ANSI/RIA R15.06-1999 offers new and improved information for users, system integrators and suppliers of robots. It also specifically addresses existing installations by establishing a minimum level of safety compliance to maintain workers' safety.

The Canadian Standards Association (CSA) has revised its 1994 robot safety standard, which is now based on the US standard. Users who follow this new CSA Z434:2003 standard will comply with the ANSI/RIA R15.06-1999 standard. Thus CSA Z434:2003 has become not only a Canadian, but a North American, standard. (Note: Users who follow ANSI/RIA R15.06-1999 may not fully comply with CSA Z434:2003.)

In the international arena, the ISO 12100 Safety of Machinery standard is based on EN 292, the fundamental standard for the safety of machines in accordance with the European Machinery Directive. Another standard, ISO 10218, provides guidance on key safety considerations. Currently under review, ISO 10218 will encompass guidelines for both suppliers and users and is expected to replace EN 775. With time, ISO 10218 may even replace both the US and CSA standards and become a single international standard.

It is noteworthy that these standards are guidelines, not regulations, so users can decide for themselves how to conform.

To avoid the potential hazards of robotic work cells, designs must be created to maximize safety while optimizing cost-savings. Flexibility and diagnostics must also be considered. For instance, conventional safety relays integrated with perimeter guarding solutions can perform basic tasks, but safety-related buses, programmable safety systems and electronic safety circuits offer greater functionality and lower life cycle costs due to their ease of maintenance, faster installation and reduced downtime.

Good planning, design and installation follow-up, along with active maintenance and support, are essential to the reliability and safety of an overall system. Having the right person to implement a safe robotic work cell is also vital to the process. Therefore, if only limited expertise exists within the manufacturing operation, working with outside consultants should be considered.

Ultimately, however, manufacturers themselves must assume the responsibility for creating a safe area around the robotic workspace, with the primary goal of preventing injuries to the workforce. Unless workers are fully safeguarded, maximal productivity will never become a reality, regardless of how many robots there are on-site.

Did you enjoy this article? Click here to subscribe to Food Engineering Magazine.

Recent Articles by Sal Spada, Contributing Editor

You must login or register in order to post a comment.



Image Galleries

Plant of the Year 2014

Blue Diamond Growers was chosen as Food Engineering's 2014 Plant of the Year. The Sacramento-based company is the world’s largest producer of almonds and almond ingredients.


Burns & McDonnell project manager RJ Hope and senior project engineer Justin Hamilton discuss the distinctions between Food Safety and Food Defense as well as the implications for food manufacturers of the Food Safety Modernization Act.
More Podcasts

FSMA Audit

What is the is most important step you have taken to become ready for a FSMA audit?
View Results Poll Archive

Food Engineering

FE September 2014

2014 September

The September 2014 issue of Food Engineering explores how lean manufacturing, quality improvements and increased automation helps processors meet rapidly changing demands. Also, read how robotics, advanced machine controls, software and OEE are just a few of the tools that can boost productivity on packaging lines.

Table Of Contents Subscribe


Food Authentication Using Bioorganic Molecules

This text provides critical tools and data needed to augment routine food analysis and enhance food safety by aiding in the detection of counterfeit, and potentially deleterious, foods.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Food Master

Food Master Cover 2014Food Master 2014 is now available!

Where the buying process begins in the food and beverage manufacturing market. 

Visit to learn more.


FE recent tweets

facebook_40.pngtwitter_40px.pngyoutube_40px.png linkedin_40px.pngGoogle +