Columns

Engineering R&D: Supercritical CO2 Extrusion Opens New Product Opportunities

March 26, 2003
/ Print / Reprints /
ShareMore
/ Text Size+
Supercritical fluid extrusion (SCFX) technology, first reported in 1992 by Syed S.H. Rizvi and Steven J. Mulvaney of the Institute of Food Science at Cornell University, combines two high-pressure processes -- supercritical CO2 processing and extrusion -- to extend the capabilities of conventional extrusion technology.

Supercritical fluid extrusion (SCFX) technology, first reported in 1992 by Syed S.H. Rizvi and Steven J. Mulvaney of the Institute of Food Science at Cornell University, combines two high-pressure processes -- supercritical CO2 processing and extrusion -- to extend the capabilities of conventional extrusion technology.

The patented SCFX process expands the food mass or dough with supercritical carbon dioxide instead of steam, allowing use of dairy ingredients and heat-sensitive flavors which cannot withstand the high temperatures and shear of conventional water-vapor extrusion. "This expansion can occur at temperatures lower than those used in traditional extrusion processes, opening up many opportunities for milk-based ingredients," says Rizvi. By manipulating the properties of whey proteins, for example, manufacturers can improve the sensory characteristics of extruded products. "Whey proteins are particularly useful to improve the texture of extruded products manufactured at higher moisture content and lower temperature," he adds.

SCFX processing creates a composite structure with porous interior and smooth tight exterior, opening new product possibilities such as ready-to-eat cereals that stay crisp in milk, crunchier airy snacks and light fluffy waffles. "Our tests have shown that SCFX-expanded products enhance 'bowl life' by absorbing less liquid," says Rizvi. Whey proteins, calcium and vitamins can be directly added in the SCFX process to boost the nutritional content of foods. Heat-sensitive flavors can be added to instantly soluble powders. Dairy proteins also result in lighter-colored products, which might further boost their use.

R&D underway at Cornell's Northeast Dairy Foods Research Center (NDFRC) in Ithaca, NY and at several undisclosed food labs, using supercritical fluid injection and extrusion equipment supplied by Wenger Manufacturing, Inc., aims at commercializing the SCFX process. Foods being evaluated include cereal, snack, chocolate, confection, bakery, pasta, pet food and powdered products, Rizvi told Food Engineering. Research at NDFRC is funded by U.S. dairy farmers through Dairy Management, Inc. (DMI), which promotes demand for dairy products on behalf of the American Dairy Association, National Dairy Council and the U.S. Dairy Export Council.

New supercritical application

Supercritical fluid technology was first applied in food manufacturing to extract vegetable oils from oilseeds; extract flavors from hops, spices and other plant materials; decaffeinate coffee; and replace distillation in alcohol production. (See: "New Process Tool: Supercritical CO2," Food Engineering, April 1982.)

As reported by FE, supercritical CO2 has characteristics of both liquids and gases: it has the density of a liquid, but diffuses as a gas. The process compresses CO2 under high pressure at a temperature above 31° C, its critical temperature where it cannot be liquified by adding pressure. At high pressures, it behaves like a liquid and functions as a solvent in extraction applications.

SCFX represents a new application for supercritical-fluid technology. According to Rizvi, conventional extrusion cooking -- which applies steam to expand the product -- is inherently a low-moisture, high-temperature process which limits the use of heat-sensitive, shear-sensitive ingredients. Water is both the "plasticizer" for the melt and the "blowing agent" for expansion, or "puffing." Product is expanded by uncontrolled phase change, and the process can be costly in terms of machine wear.

The SCFX process, on the other hand, "decouples" puffing from moisture content to minimize heat and shear damage to feedstock. Expansion occurs by nucleation and diffusion, with no phase change. Decoupling expansion from moisture content also reduces specific mechanical energy (torque) to reduce operating costs and machine wear. By controlling pressure drops, the number and size of microstructure cells in the product can be varied, thus controlling product texture.

According to Rizvi, connecting a supercritical fluid process to an extrusion process is relatively easy and can be accomplished at low additional cost ($30,000 to $40,000) relative to the price of the extrusion system.

Dairy Management, Inc., 10255 West Higgins Road, Suite 900, Rosemont, IL 60018-5616. Tel.: (847) 803-2077; Fax: (847) 803-2077; Website: www.dairyinfo.com

Wenger Manufacturing, Inc., 2405 Grand Ave., Kansas City, MO 64108-2519. Tel.: (816) 221-5084, (800) 833-0174; Fax: (816) 221-5086; Website: www.wenger.com

Did you enjoy this article? Click here to subscribe to Food Engineering Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

Plant of the Year 2014

Blue Diamond Growers was chosen as Food Engineering's 2014 Plant of the Year. The Sacramento-based company is the world’s largest producer of almonds and almond ingredients.

Podcasts

Burns & McDonnell project manager RJ Hope and senior project engineer Justin Hamilton discuss the distinctions between Food Safety and Food Defense as well as the implications for food manufacturers of the Food Safety Modernization Act.
More Podcasts

FSMA Audit

What is the is most important step you have taken to become ready for a FSMA audit?
View Results Poll Archive

Food Engineering

FE August 2014

2014 August

The August 2014 issue of Food Engineering explores how your operation could be doing more to create a culture of employee engagement. Also, read more on how your business and insurance partners must know the basics of your business and its nuances as well.

Table Of Contents Subscribe

THE FOOD ENGINEERING STORE

Food-Authentication-Flyer-(.gif
Food Authentication Using Bioorganic Molecules

This text provides critical tools and data needed to augment routine food analysis and enhance food safety by aiding in the detection of counterfeit, and potentially deleterious, foods.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Food Master

Food Master Cover 2014Food Master 2014 is now available!

Where the buying process begins in the food and beverage manufacturing market. 

Visit www.foodmaster.com to learn more.

STAY CONNECTED

FE recent tweets

facebook_40.pngtwitter_40px.pngyoutube_40px.png linkedin_40px.pngGoogle +