Food Engineering logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Food Engineering logo
  • NEWS
    • Latest Headlines
    • Manufacturing News
    • People & Industry News
    • Plant Openings
    • Recalls
    • Regulatory Watch
    • Supplier News
  • PRODUCTS
    • New Plant Products
    • New Retail Products
  • TOPICS
    • Alternative Protein
    • Automation
    • Cannabis
    • Cleaning | Sanitation
    • Fabulous Food Plants
    • Food Safety
    • Maintenance Strategies
    • OEE
    • Packaging
    • Sustainability
    • More
  • EXCLUSIVES
    • Plant Construction Survey
    • Plant of the Year
    • Sustainable Plant of the Year
    • State of Food Manufacturing
    • Top 100 Food & Beverage Companies
  • MEDIA
    • Podcasts
    • Videos
    • Webinars
    • White Papers
  • FOOD MASTER
  • EVENTS
    • Food Automation & Manufacturing Symposium and Expo
    • Industry Events
  • RESOURCES
    • Newsletter
    • Custom Content & Marketing Services
    • FE Store
    • Government Links
    • Industry Associations
    • Market Research
    • Classified Ads
  • EMAGAZINE
    • eMagazine
    • Archive Issue
    • Advertise
  • SIGN UP!

Precision encapsulation

By Kevin T. Higgins
June 1, 2005
Technology developed for the metals industry offers unprecedented uniformity in encapsulated ingredients and micro-inclusions for food processing.

Fenglin Yang, encapsulation lab manager and senior process development engineer, Harper International Corp., Lancaster, NY.
Nonthermal processes have tremendous appeal to food manufacturers because of the promise of stabilizing products without destroying the most sensitive and nutritious components. Successful applications are few and far between, though the burgeoning market for functional foods, nutraceuticals, probiotics and other nutritionally enhanced products suggests less destructive technologies can be cost-justified if they produce higher value foods with broader profit margins.



That opportunity partly explains why an upstate New York firm that specializes in specialized industrial ovens is trying to transfer a precision process for microencapsulation to the food industry. In late 2003, Lancaster, NY-based Harper International Corp. licensed technology from a German firm to produce perfectly rounded spheres with extremely tight size distribution, even at a microscopic level. Harper develops and designs advanced thermal processing systems, such as sintering furnaces for nuclear fuels. Precise control of temperature and atmosphere in compact, low-maintenance systems is a company hallmark.

Developed in the early 1990s by chemical engineers now affiliated with Brace GmbH, the microsphere/microencapsulation technology originally was devised for metals, ceramics and other materials with extremely high melting points. It produced precisely sized microspheres that also had applications in pharmaceuticals and feedstuffs. Harper International built a lab to develop formulations for volatile oils, aromatic and flavor essences and other food ingredients that can benefit from the Brace process. Its laboratory production unit can output test samples of encapsulated material and co-manufacturers are considering building pilot plants or commercial facilities. Production units with capacities of 10,000 liters an hour have been built in Europe.

Heading Harper's development work is Fenglin Yang, a research engineer and manager of the R&D lab. Yang received an undergraduate degree in chemical engineering in 1982 from Beijing (China) University of Chemical Technology and completed doctoral work in chemical engineering in 1999 at the University of Buffalo (NY). He joined Harper International that year and has headed numerous process development, design and scale-up projects, including microencapsulation processes for mint oil and garlic oil for food applications.

FE: The Brace process is suitable for producing microspheres and microcapsules. What is the distinction between the two?

Yang: With microspheres, the process begins by mixing a powder with water or another medium to make a uniform suspension. The resulting liquid runs through the machine and is subjected to drying, cooling or a chemical reaction to emerge as a solid sphere. With microencapsulation, a solid shell forms around the flavor or compound being encapsulated. In both processes, size distribution is very tight and ranges from 50 microns to 6,000 microns (6 mm). An exact payload of the active compound is delivered in a perfectly spherical dose.



Dr. Yang prepares a test using a lab version of the Brace process system. A small footprint is one of the system’s advantages, with units capable of throughput of 1,000 liters an hour requiring less than 40 sq. ft. Source: Harper International Corp.
FE: How does production of microspheres and microcapsules differ?

Yang: Only one nozzle is used if microspheres are produced, while a patented double-nozzle system produces microcapsules. The machine is simple, and the concept is simple: pressure equal to one to two bars pushes the ingredient from a feed tank to the nozzle, where constant laminar flow occurs. A closed-loop control circuit to maintain a constant variable frequency and amplitude causes the flow to break up into uniform droplets. Surface tension of the feed materials causes the droplets to form into spheres, then solidify.

FE: How are you able to achieve uniform encapsulation?

Yang: The key is finding the right recipe to match the viscosity of the core-agent liquid and the shell material so that surface tension causes encapsulation to occur. A simple example is water and oil: oil doesn't mix with water, and the same principle applies to encapsulation. You have to choose materials that don't mix.

Solidification is accomplished by drying, cooling or chemical reaction. If alginate is used for the shell material, for example, it becomes a cross-linked polymer, and hardening occurs as a chemical reaction. If gelatin is used, it is heated to 70

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Kevin Higgins was Senior Editor for FE.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • 2025 Top 100 Food and Beverage Companies

    FOOD ENGINEERING’s 2025 Top 100 Food and Beverage Companies

    While sales were largely down under dynamic economic and...
    Top 100 Food & Beverage Companies
    By: Alyse Thompson-Richards
  • Bottling machine

    How Optical and X-Ray Inspection Supports Bottling Safety and Quality

    By transitioning from legacy single-technology systems to...
    Food Safety
    By: Dan McKee
  • Bread baking in oven

    The State of Food Manufacturing in 2025

    Food and beverage manufacturers are investing in...
    State of Food Manufacturing
    By: Alyse Thompson-Richards
Manage My Account
  • eMagazine
  • Newsletter
  • Online Registration
  • Manage My Preferences
  • Customer Service

More Videos

Popular Stories

The Campbell's Company logo

Campbell’s Terminates Exec Over Alleged Disparaging Comments

Frito-Lay logo

PepsiCo to Close Two Florida Facilities

alternative protein products

Alternative Protein in 2025: Key Trends and Technologies

State of Maufacturing 2025

Events

June 17, 2025

Refrigerated & Frozen Foods’ State of the Cold Chain

On Demand Kelley Rodriguez, Editor in Chief of Refrigerated & Frozen Foods, will be joined in this 60-minute webinar by industry experts to help unpack the latest research.

July 23, 2025

Decarbonizing Process Heat: What You Should Know and Next Steps

On Demand Driven by climate goals, business risk, client interest, and resilience considerations, food and beverage companies are increasingly turning their attention to decarbonizing their production processes.

View All Submit An Event

Products

Recent Advances in Ready-to-Eat Food Technology

Recent Advances in Ready-to-Eat Food Technology

See More Products

CHECK OUT OUR NEW ESSENTIAL TOPICS

Alternative ProteinAutomationCleaning/SanitationFabulous Food Plants

Food SafetyMaintenance StrategiesOEE

PackagingSustainability

Related Articles

  • medicine-2207622_1170x658.jpg

    Rising Consumer Health Consciousness Will Increase Adoption of Food Encapsulation Technology

    See More
  • Precision filling, as requested

    See More
  • Precision perforations aid CAP films

    See More

Related Products

See More Products
  • fe.jpg

    Food Engineering: Emerging Issues, Modeling, and Applications

  • Functionalizing Carbohydrates for Food Applications

See More Products
×

Elevate your expertise in food engineering with unparalleled insights and connections.

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Food Master
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing